
Contents lists available at ScienceDirect

International Journal of Mass Spectrometry

Contents

Foreword

137-140

IJMS special issue John R. Eyler - Guest editors' foreword

Nicolas C. Polfer, James E. Bruce

Curriculum Vitae

141-141

Curriculum Vitae: John R. Eyler

Regular Articles

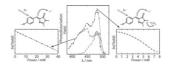
142-154

Investigation of VUV photodissociation propensities using peptide libraries

Xiaohui Liu, Yong Fuga Li, Brian C. Bohrer, Randy J. Arnold, Predrag Radivojac, Haixu Tang, James P. Reilly

► We study the VUV photodissociation of peptides found in synthetic libraries. ► The propensities for forming various unusual high-energy fragment ions are examined. ► The potential for using high-energy fragment ions in *de novo* sequencing is discussed.

$$\begin{bmatrix} \begin{matrix} R_1 \\ CH \\ O \\ H_2N - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \overset{-R_1R_2CH}{\overset{-}{\bigoplus}} \begin{bmatrix} \begin{matrix} O \\ H_2N - \dot{C}H - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{bmatrix} \begin{matrix} O \\ -H \cdot \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{bmatrix} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{bmatrix} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{bmatrix} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{bmatrix} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{bmatrix} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{bmatrix} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{bmatrix} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{bmatrix} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{bmatrix} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{bmatrix} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{bmatrix} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{bmatrix} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{bmatrix} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{bmatrix} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{bmatrix} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{bmatrix} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{bmatrix} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{bmatrix} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{bmatrix} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{bmatrix} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{bmatrix} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{bmatrix} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{bmatrix} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{-}{\bigoplus}} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{\longrightarrow}{\bigoplus}} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{\longrightarrow}{\bigoplus}} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{\longrightarrow}{\bigoplus}} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{\longleftarrow}{\bigoplus}} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{\longleftarrow}{\bigoplus}} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{\longleftarrow}{\bigoplus}} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{\longleftarrow}{\bigoplus}} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{\longleftarrow}{\bigoplus}} \begin{matrix} O \\ HN - CH - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{\longleftarrow}{\bigoplus}} \begin{matrix} O \\ HN - C - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{\longleftarrow}{\bigoplus}} \begin{matrix} O \\ HN - C - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{\longleftarrow}{\bigoplus}} \begin{matrix} O \\ HN - C - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{\longleftarrow}{\bigoplus}} \begin{matrix} O \\ MN - C - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{\longleftarrow}{\bigoplus}} \begin{matrix} O \\ MN - C - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{\longleftarrow}{\bigoplus}} \begin{matrix} O \\ MN - C - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{\longleftarrow}{\bigoplus}} \begin{matrix} O \\ MN - C - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{\longleftarrow}{\bigoplus}} \begin{matrix} O \\ MN - C - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{\longleftarrow}{\bigoplus}} \begin{matrix} O \\ MN - C - C - R \end{matrix} \end{bmatrix} \overset{\bigoplus}{\overset{\longleftarrow}{\bigoplus}} \begin{matrix} O \\ MN - C - C - R \end{matrix} \end{matrix} \end{matrix} \overset{\bigoplus}{\overset{\longleftarrow}{\bigoplus}} \begin{matrix} O \\ MN - C - C - C - R \end{matrix} \end{matrix} \end{matrix} \overset{$$


Contents v

155-166

Photofragmentation of and electron photodetachment from a GFP model chromophore in a quadrupole ion trap

Matthew W. Forbes, Andrea M. Nagy, Rebecca A. Jockusch

▶ Photodissociation of the green fluorescent protein model chromophore in a QIT. ▶ Electron detachment requires a single visible photon. ▶ Photofragmentation requires multiple photons and is suppressed by collisions. ▶ Estimates are made for electron photodetachment and fragmentation cross sections.

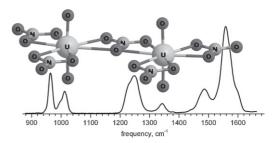


167-174

Structures of electrosprayed Pb(Uracil-H)⁺ complexes by infrared multiple photon dissociation spectroscopy

Osama Y. Ali, Travis D. Fridgen

► The IRMPD spectra of three complexes with a [Pb(Ura-H)]*, core have been recorded in the O-H/N-H stretch region. ► The computed spectra for the lowest energy structures agree very well with the experimental IRMPD spectrum. ► The [Pb(Ura-H)]* core is deprotonated at N3 and has lead bound to either N3 and O4 or N3 and O2. ► The [Pb(Ura-H)]* structure deprotonated at N1 with lead bound to N1and O2 is not observed. ► [Pb(Ura-H)(Ura)]* was found to have four-coordinate lead. ► Water in hydrated complexes are directly coordinated to lead, the first also intramolecularly hydrogen bonded.

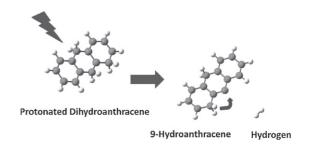


175-180

The gas-phase bis-uranyl nitrate complex $[(UO_2)_2(NO_3)_5]^-$: Infrared spectrum and structure

Gary S. Groenewold, Michael J. van Stipdonk, Jos Oomens, Wibe A. de Jong, Michael E. McIlwain

▶ The structure of the $[(UO_2)_2(NO_3)_5]$ – cluster was deduced using IRMPD and DFT. ▶ Cluster structure involves two uranyl nitrate molecules bridged by one nitrate. ▶ Uranium is less strongly coordinated compared to the tris-uranyl nitate anion. ▶ Pendant nitrate ligands are more strongly coordinated.

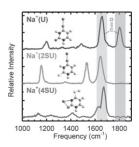


181-190

Formation of molecular hydrogen from protonated 9, 10-dihydroanthracene: Is the ejected $\rm H_2$ rotationally and vibrationally excited?

Martin Vala, Jan Szczepanski, Jos Oomens

▶ Infrared multiphoton dissociation of protonated dihydroanthracene yields molecular hydrogen. ▶ After H₂ ejection, hydrogens shift about the carbon framework to produce 9-hydroanthracene. ▶ The H₂ is calculated to be asymmetrically ejected which may lead to its rovibrational excitation. ▶ Rotationally excited H₂ has been invoked to explain several important astronomical observations.

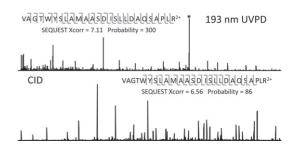

vi Contents

191-202

Infrared multiple photon dissociation action spectroscopy of sodiated uracil and thiouracils: Effects of thioketo-substitution on gas-phase conformation

Y.-w. Nei, T.E. Akinyemi, C.M. Kaczan, J.D. Steill, G. Berden, J. Oomens, M.T. Rodgers

- ▶ Sodium complexes of uracil and five thiouracils are examined by IRMPD spectroscopy.
- ▶ Binding of Na⁺ to the canonical tautomer is preferred for U, 2SU, 5Me2SU and 6Me2SU.
- ▶ Binding of Na⁺ to the minor 4-sulfhydryl tautomer is preferred for 4SU and 24dSU.

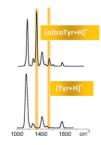


203-208

Analysis of protein digests by transmission-mode desorption electrospray ionization mass spectrometry with ultraviolet photodissociation

Jared B. Shaw, Jennifer S. Brodbelt

► Transmission mode DESI was utilized for a proteomics application. ► Confident protein identification is achieved through sequencing by tandem mass spectrometry. ► Ultraviolet photodissociation at 193 nm is compared to collision induced dissociation.

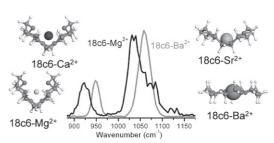


209-216

Tyrosine nitration as evidenced by IRMPD spectroscopy

Rajeev K. Sinha, Barbara Chiavarino, Maria Elisa Crestoni, Debora Scuderi, Simonetta Fornarini

▶ Protonated 3-nitrotyrosine is examined in 1000–2000 and 3200–3700 cm⁻¹ spectral ranges. Spectroscopic results are interpreted with the aid of quantum chemical calculations. ▶ IRMPD spectra of protonated 3-nitrotyrosine and protonated tyrosine ions are compared. ▶ Highly active modes diagnostic of the presence of the nitro group are revealed.

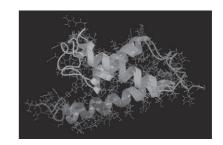


217-224

Vibrational study of isolated 18-crown-6 ether complexes with alkaline-earth metal cations

Francisco Gámez, Paola Hurtado, Bruno Martínez-Haya, Giel Berden, Jos Oomens

▶ We explore the structure of isolated 18-crown-6 ether (18c6) complexes with alkaline-earth divalent cations. ▶ Free-electron laser vibrational spectroscopy of the C–O and C–C stretching modes is performed. ▶ We find that symmetric molecular arrangements (point groups D_2 , C_2 , D_{3d}) dominate the conformational landscape. ▶ Large cations are bound in open conformations, small cations lead to cage-like inclusion complexes.


Contents

225-231

Investigating the gas phase structure of KIX with radical directed dissociation and molecular dynamics: Retention of the native structure

Xing Zhang, Ryan R. Julian

▶ Radical directed dissociation is used to examine protein structure in the gas phase. ▶ KIX is a three helix bundle protein that retains its native structure in the gas phase. ▶ Various electrostatic forces stabilize the native structure in the gas phase.

232-238

Fluoronium metathesis and rearrangements of fluorine-stabilized carbocations

Jos Oomens, Thomas Hellman Morton

▶ Halonium metathesis of CF_3^+ with 3-methylcyclopentenone gives the most stable $C_6H_8F^+$. ▶ CF_3^+ also gives the most stable isomer with cyclohexenone and 2-methylcyclopentenone. CF_3^+ reacts with conjugated enones to give $C_6H_7^+$, which forms via HF loss from $C_6H_8F^+$. ▶ The $C_6H_7^+$ ion is a mixture of protonated benzene plus protonated fulvene. ▶ The most stable $C_6H_8F^+$ cannot lose HF to give either $C_6H_7^+$ isomer without rearranging.

239-252

Spectroscopically resolved competition between dissociation and detachment from nitrobenzene radical anion

Jeffrey D. Steill, Jos Oomens

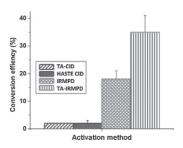
▶ Gas-phase IR action spectrum of nitrobenzene anion.
▶ Strong resonance interaction of nitro and phenyl groups.
▶ DFT calculations of energies and vibrations of nitrobenzene neutral and anion.
▶ Detailed spectral assignments and comparison to previous experiments.
▶ Statistical model of competition between dissociation and electron detachment.

253-259

Electron detachment dissociation and infrared multiphoton dissociation of heparin tetrasaccharides

Franklin E. Leach III, Zhongping Xiao, Tatiana N. Laremore, Robert J. Linhardt, I. Jonathan Amster

▶ Ionized Sulfate Criteria defined; succinctly describes the ionic nature of a GAG. ▶ Heparin oligosaccharides, the most complex GAGS, are analyzed both by EDD and IRMPD. ▶ Cross-ring cleavages and glycosidic bond dissociation are produced by EDD and IRMPD.

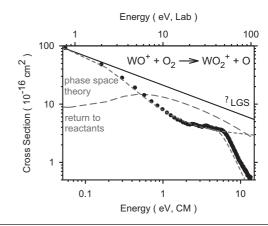

viii Contents

260-264

Tandem mass spectrometric methods for the analysis of iTRAQ labeled peptides in a quadrupole ion trap

Atim A. Entyenihi, John R. Griffiths, Gary L. Glish

- ▶ iTRAQ with a quadrupole ion trap. ▶ High iTRAQ reporter ion conversion efficiency with IRMPD.
- ▶ Methods to decrease the low-mass cut-off in MS/MS experiments using a quadrupole ion trap mass spectrometer.

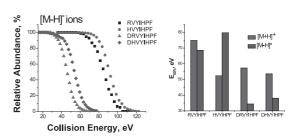


265-274

Collision-induced dissociation of MO^+ and MO_2^+ (M = Ta and W): Metal oxide and dioxide cation bond energies

Christopher S. Hinton, Murat Citir, Manuel Manard, P.B. Armentrout

▶ In this study, we examine the collision-induced dissociation of tantalum and tungsten monoxides and dioxide cations. ▶ Reactions of tantalum and tungsten monoxide cations with molecular oxygen are studied. ▶ Bond energies for tantalum and tungsten monoxides and dioxide cations are determined and compared to theoretical and literature values. ▶ The dioxide cation thermochemistry determined here is much more precise that any previous determinations.

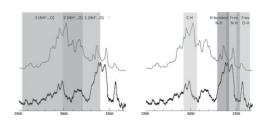


275-280

Energetics and dynamics of dissociation of deprotonated peptides: Fragmentation of angiotensin analogs

Julia Laskin, Zhibo Yangt

► We examined energy and entropy effects in dissociation of deprotonated peptides using surfaceinduced dissociation combined with RRKM modeling. ► Relative stability of peptides towards fragmentation is very different for protonated and deprotonated species. ► Fragmentation of acidic peptides is associated with very low threshold energy and tight transition state. ► Charge-remote fragmentation is observed for low-energy pathways of the basic RVYIHPF peptide. ► Backbone fragmentation is characterized by fairly high energy barrier.

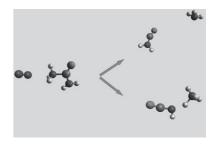


281-288

N-H⁺ vibrational anharmonicities directly revealed from DFT-based molecular dynamics simulations on the Ala₂H⁺ protonated peptide

Amel Sediki, Lavina C. Snoek, Marie-Pierre Gaigeot

▶ First principle DFT-based dynamics of the protonated Ala_7H^+ peptide investigated at room temperature on a pico-second time-scale. ▶ The statistically most relevant conformations of Ala_7H^+ display two $N-H^+ \cdot \cdot \cdot O-C$ hydrogen bonds on average. ▶ $N-H^+$ stretching vibrational anharmonic movements revealed. ▶ The dynamical spectrum extracted from the DFT-based dynamics match extremely well the experimental IR-MPD spectrum. ▶ We have uncovered three s eparate signatures of $N-H^+$ depending whether it is involved in one, two or three H-bonds with surrounding C-O groups.


Contents ix

289-298

Collision induced dissociation of protonated urea with $\rm N_2$: Effects of rotational energy on reactivity and energy transfer via chemical dynamics simulations

Yannick Jeanvoine, Marie-Pierre Gaigeot, William L. Hase, Kihyung Song, Riccardo Spezia

► A QM/MM chemical dynamics of protonated urea with a diatomic projectile (N₂) is presented. ► An analytical N₂/interaction potential for collision is developed, useful also for other related systems. ► Energy transfer and reactivity depends on the rotational energy of the projectile. ► A highest rotational activation of the ion favours the formation of high energy fragmentation

299-306

products.

Characterization of protonated phospholipids as fragile ions in quadrupole ion trap mass spectrometry

Timothy J. Garrett, Matthew Merves, Richard A. Yost

▶ We examine the ion fragility of protonated and sodiated ions for phospholipids. ▶ We introduce experiments for ion fragility determination in ion transport. ▶ The sodiated ions are more stable under mass analysis and ion transport.

307-310

Heck coupling in the gas phase: Examination of the reaction mechanism by ion/molecule reactions and mass spectrometry

Lukas Fiebig, Hans-Günther Schmalz, Mathias Schäfer

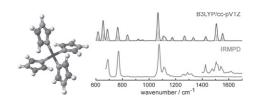
▶ Labile Heck coupling reaction intermediates and the coupling product are investigated in the gas phase. ▶ Charge-tagging, ESI-MSⁿ, ion/molecule reactions and exact ion mass measurements are performed. ▶ A LTQ-Orbitrap Instrument is modified for the study. ▶ The results suggest that the Heck reaction proceeds via the accepted mechanism in solution and in the gas phase.

311-315

Modified silica-containing matrices towards the MALDI-TOF-MS detection of small molecules

Conor P. Mullens, Sreenivasa R. Anugu, Waldemar Gorski, Stephan B.H. Bach

► Immobilization of CHCA on silica with retention of 328 nm absorption. ► Reduction of low mass cationic interferences using the mesoporous silica. ► The SBA-15-CHCA matrix gives the best MALDITOF results for dopamine and serotonin. ► Method of preparing SBA-15-CHCA is simple and matrix has a long shelf life.

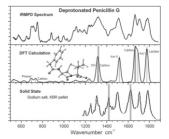

Contents

316-329

IR spectroscopy of isolated metal-organic complexes of biocatalytic interest: Evidence for coordination number four for Zn^{2+} (imidazole)₄

Anita Lagutschenkov, Ulrich Joseph Lorenz, Otto Dopfer

▶ IR spectroscopic and mass spectrometric characterization of $[ZnIm_4]^{2+}$ complexes. ▶ First experimental characterization of Zn^{2+} -imidazole interaction in the gas phase. ▶ Evidence for tetrahedral coordination number CN = 4 in $[ZnIm_n]^{2+}$ complexes. ▶ Systematic trends of Zn^{2+} -Im interaction in $[ZnIm_n]^{2+}$ complexes with n = 1-4. ▶ Biochemical implications for Zn^{2+} -Im interaction in Zn^{2+} -Im interaction in Z

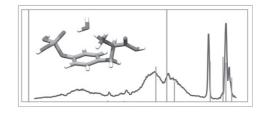


330-337

IRMPD spectroscopic investigation of gas-phase complexes of deprotonated penicillin G with Ba^{2+} , Zn^{2+} and Cd^{2+}

Robert C. Dunbar, Jos Oomens, Galina Orlova, Diethard K. Bohme

▶ IRMPD spectra of deprotonated penicillin G complexes with metal ions. ▶ Bare penicillinate anion spectrum agrees with calculation. ▶ Barium(II) complex has predicted structure chelating 3 oxygen sites. ▶ Zinc(II) complex spectrum suggests similar structure, but rearrangement is possible. ▶ Cadmium(II) complex rearranges depending on electrospray solvent.



338-347

Structure of singly hydrated, protonated phospho-tyrosine

D. Scuderi, J.M. Bakker, S. Durand, P. Maitre, A. Sharma, J.K. Martens, E. Nicol, C. Clavaguéra, G. Ohanessian

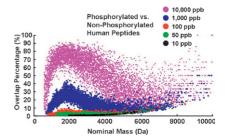
▶ We use IRMPD spectroscopy in both the fingerprint and X–H stretching regions. ▶ We compare the spectra of singly hydrated and bare phosphorylated tyrosine. ▶ MP2 quantum calculations are used to assign structures based on IR spectra. ▶ Water bridges between the amino acid and phosphate functions.

348-356

The ion/molecule reactions of CCl₃+ with acetophenones

Tatiana Giroldo, Camila Bacellar Cases da Silveira, José M. Riveros

▶ CCl_3^+ reacts with acetophenone in the gas-phase through three different channels. ▶ One of the main reaction products, $C_9H_7C_{12}O^+$, presents an interesting structural problem. ▶ IRMPD of $C_9H_7C_{12}O^+$ ions proceeds by loss of either Cl or CH_3 in violation of the even-electron rule. ▶ Theoretical calculations and reactivity studies clearly show the formation of two isomeric $C_9H_7C_{12}O^+$ ions.


Contents xi

357-361

Identification of phosphorylated human peptides by accurate mass measurement alone

Yuan Mao, Leonid Zamdborg, Neil L. Kelleher, Christopher L. Hendrickson, Alan G. Marshall

- ▶ Peptide phosphorylation can be detected by mass alone. ▶ For mass error ±50 ppb, 95% of all phosphorylated human tryptic peptides can be distinguished from nonmodified peptides.
- ▶ Phosphopeptide precursor ions in MS1 can be selected for selected dissociation in MS2.

